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Abstract. A u d  = 03 extended Hubbard Hamiltonian (EHH) with a qualitatively accurate 
band structure, appropriate for a cubic lattice, is investigated. At half filling the system 
undergoes a metal-insulator transition at a critical value of the charge transfer gap. Doping 
beyond half filling produces rapid metallisation of the insulating state. For all dopings 
considered, the effective quasiparticle-quasiparticle interaction is only attractive in the d 
channel with sink, sin ky symmetry. The effective interaction in all symmetry channels is 
suppressed on doping. 

1. Introduction 

The development of a satisfactory many-body theoretical description of the properties 
of the high-T, superconducting oxides still poses a serious theoretical challenge. Some 
features in common to all the cupric oxides are their quasi-two-dimensional structure, 
a strong on-site Cu repulsion and copper orbitals strongly hybridised with their 
nearest-neighbour oxygen orbitals [l-31. Direct 0-0 hopping which is also present 
is thought to be significantly weaker than the Cu-0 hopping [4]. The set of 0 2p,, 
0 2p, and Cu 3dX2+ would seem therefore to represent a minimal but qualitatively 
sufficient manifold for a description of the electronic properties near the Fermi surface 
[l, 21. Given the strong Cu-0 mixing this leads to either a two- or three-band model 
effective Hamiltonian, depending on how direct 0-0 overlap is incorporated. At 
this point a reduction of these models to an effective one-band description remains 
controversial and this motivates further study of the properties of a multi-band model 
with a qualitatively realistic electronic structure. 

We take as a starting point an extended Hubbard Hamiltonian (EHH), which can, 
in principle, accommodate all electronic effects. However, as the Coulomb repulsion on 
the Cu sites, U,, is clearly the largest energy in the problem [4], we follow a procedure 
commonly used in treating the heavy fermion systems, and set equal to infinity. 
The on-site repulsion on the 0 orbitals, which is unimportant in the doping regime 
we consider, and intersite Coulomb interactions, will be neglected in what follows. In 
the hole representation the = 00 EHH which we take to describe the Cu-0 sheet is 
given by 
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when the additional operator constraint 

is imposed at all copper sites at all times. Here Dj'. creates a hole on a Cu 3d,~-~z orbital, 
while p ;  creates a hole in an 0 2px or 0 2p, orbital. E ,  and E ,  are the site energies of 
the 3dXz-,z orbital and the degenerate 0 2px and 0 2p, orbitals respectively. V is the 
Cu-0 hopping matrix element and yk = [sin2(k,/2) + ~in~(k , /2) ] ' /~  when lengths are 
measured in units of the Cu-Cu bond length. This model has been studied previously 
[5] and analytic results obtained in a regime of parameters such that V is much less 
than the charge transfer gap 2A E ,  - E d .  In particular it was shown that at  zero 
doping and for large enough A the model exhibits a metal-insulator transition from 
a heavy Fermi liquid to a charge transfer insulator. It is generally appreciated now 
that the type of superconducting instability allowed in the generic Hubbard models 
depends on both the band structure and filling factor. It is known that the = CO 

Anderson lattice Hamiltoitian with isotropic conduction band dispersion admits gauge 
boson mediated d-wave superconductivity to leading order in the residual interaction 
between the quasi-particles [6-81. On the other hand in the one-band Hubbard model, 
onto which the two-band ALH can be mapped if V 4 2A [9], it was shown within an 
RPA calculation [lo] that Fermi surface nesting in a cubic lattice could drive either a 
d wave or extended s-wave pairing instability; but that at low carrier density p-state 
superconductivity was favoured. Similar conclusions were reached in a study of the 
one-band Hubbard model in the large-U limit [ll]. However, the high-T, oxides lie 
in a region of parameter space where V N A. It is the purpose of this work therefore 
to consider the EHH with a tight-binding parametrisation of the band structure, that 
allows for Fermi surface nesting, for arbitrary values of V and A. Given V and A 
inferred from experiment [4], this enables us to determine how close a given system is 
to the metal-insulator transition and to see how doping affects this transition. We also 
investigate the effect of varying A and doping on superconductivity within the model. 

2. The metal-insulator transition 

The constraint (2) is implemented by a slave boson method [12-141. On writing 
D t  = d&bj, here djf. is a fermion field creating the 3d9 state and b; is a boson field 
creating the 3d'O state, (2) is transformed into a holonomic constraint 

Ja 

which is then enforced by coupling it to the Hamiltonian with a Lagrange multiplier 

H +. H +ixAj (Q,  -qoN).  
j 

(4) 

To generate a consistent 1/N expansion, where N is the degeneracy of the d9 level, qo is 
regarded formally as O(1). For our purposes it is most convenient to use a set of boson 
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coordinates in which the boson propagators are infrared finite. In this radial gauge [8] 
the Lagrange multiplier Aj is promoted to a gauge field by absorbing the derivative, 
with respect to imaginary time, of the phase of the boson field bj = rjexp(iOj). The 
grand canonical partition function can then be written as 

2 = s Dp' Dp Dd' Dd Dr DI1 exp (- JD dr W ) )  

where 

The stationary phase approximation to (5 )  is obtained on replacing the boson fields by 
c numbers: 

where 

Ed E Ed + i(Aj) is the renormalised d-level energy, so = V (r i ) ,  the renormalised hopping 
matrix element and N, the number of unit cells. Varying the resultant effective action 
with respect to Ed, so and p leads to the equations 

and 

which determine Ed and so, together with an equation 

which positions the Fermi surface as demanded by Luttinger's theorem. In these 
expressions the function f is the Fermi distribution function, E;) = ((cp +Ed) 2 & ) / 2  
the energies of the upper and lower hybridised bands respectively, with 

E; = ( E ~  - ~ d ) *  + 16~;~:. 
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The coherence factors u:?~ (uL-)~) which determine the d (p) weight in the lower band 
are given by 
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and xh is the fraction of holes added on doping. 
The set of equations [9-111 was solved numerically. Fixing V at 1.4 eV [4] 

the solutions were studied as a function of A and xh. Of particular interest in this 
model is the quantity l(bj)I2 = ( r j ) 2  = m/m' [15], the inverse of the quasiparticle 
mass enhancement, the magnitude of which determines the degree of itinerancy of the 
quasiparticles. When A 5 3 eV, the normal state is described by a Fermi liquid for all 
xh 2 0. However, as the charge transfer gap is increased further, (rj)' is renormalised 
downwards, and at finite doping there is a gradual change from a Fermi liquid with 
moderate mass enhancement to a heavy Fermi liquid in which charge fluctuations on 
the Cu sites are suppressed; see figure 1. At half filling ( r j j2  drops rapidly and vanishes 
for all A 2 Ac = 3.25 eV (figure l), which signals a transition from a metallic to an 
insulating state-in this case a charge transfer insulator. The values of A at which this 
transition occurs is sensitive to V which is not known with precision, for example for 
V = 1 eV the critical value of A is 2.5 eV. We note from figure 1 that ( r j ) 2  is essentially 
doping independent for A 5 3 eV whereas doping produces a rapid metallisationt of 
the insulating state close to the transition point, as can be seen in both figures 1 and 2. 
These results are quaIitatively the same as those obtained recently by Balseiro et a1 [16] 
who analysed a more complex finite-Ud EHH which also included an on-site Coulomb 
interaction on the oxygen sites as well as nearest-neighbour copper-oxygen repulsion. 

" ' " l ' ~ ' ' l ' ' ~  ' I  - - 
O:x,=0.08 - 
+:~,=0.04 - 

9 o:x,=o.oo - 

- 0 - 
B 
o 0  

4 0  

0 
O 4  

- 

4 
4 

0 

-' a 1 ' ' ' ' ' ' ' ' , & ,  ' ' ' 

N 2- 
V 

Figure 1. ( T , ) ~  = m/m* as function of charge transfer 
gap for various dopings. 

Figure 2. (r,)* = m/m' as function of doping for 
various values of the charge transfer gap A. Note in 
both figures 1 and 2 that ( r j ) *  is essentially doping 
independent for A 5 3 eV, whereas doping produces 
rapid metallisation in the insulating state, in partic- 
ular close to the transition. 

t After this work was complete we received a preprint from C A R Sa de Melo and S Doniach (Stanford 
University) who have derived similar results within an isotropic model. 
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3. Superconducting instabilities 

We now turn to consider the superconducting instabilities of the model, and study the 
behaviour of the coupling constants in various symmetry channels, both as a function 
of doping x h  and charge transfer gap A. To this end it will be necessary to include the 
fluctuations of the boson fields. We will limit the scope of the calculation to an effective 
free-boson theory giving 1/N corrections to the thermodynamics and the leading (l/N) 
contribution to the quasiparticle-quasiparticle interaction. 

The Lagrangian is given by 

9 = YMF + p ~ a u ~ s  

where YMF is given by (8) and 

where 

and 

D-'(q, iw,) = 0;' - H ( q ,  iw,). 

The inverse bare boson propagator is given by 

The elements of the self-energy matrix: 

and 

contain both intraband and interband contributions, where 
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and 

(20) 

o, is a boson Matsubara frequency. 
Retardation plays an important role in the pairing interaction and, as in the 

Eliashberg theory for the electron-phonon interaction [17], Fermi surface averaged 
spectral weights of the two-particle irreducible vertex r(q, a) can be introduced : 

~ ' ( o )  = ((I/z) Imr(q,o))bs .  (21) 

The average ( )ks is defined by 

where dS is an integration over the Fermi surface, ( 1 / ( 2 ~ ) ~ )  IuJ' the density of states 
and gi a Fermi surface harmonic, see for example [18], as we model Cu-0 sheets, cubic 
harmonics are used. The superconducting transition temperature can be determined 
from these spectral weights. Here, however, we only consider the one moment of F ' ( o )  

Ai = 2 Lm - F ' ( o )  = (Re r(q,O))Ls = ai/N (23) 

which measures the strength of the pairing interaction in a given channel; hence only 
the zero-frequency limit of the irreducible vertex is needed. We use a convention such 
that a negative ai corresponds to an attractive interaction. 

At leading order in (1 / N )  the effective interaction between quasiparticles is mediated 
by the exchange of a single boson and r(q,o = 0) = r(q) is given by 

r(q) = -4[Y(k1)0iy)uiT1q + ?(k, + q)uk,+q'k, (-) (-) ] [?(k2)0kz (-1 ukz-q (-1 + ? ( k 2  -q)uii!-qukz] Drr(q) 
(-) (-) (-4 (-) (-) (-) t- 'kl 'kl+qUk2 'k2-qDU(q) - 2iukl 'k l+q  

(-1 (-4 (-) (-4 [?(k2)ukz 'kZ-q f ? ( k 2  - qIUk, ukz-q] Dr,(q) 

(24) (-4 (-) (-1 (-) (-) (-) - 2iukz 'k2-q [?(kl)ukl 'k,+q + ? ( k l  + qluk, Okl+q] Dnr(q). 

Here the incoming momenta k ,  and k ,  (set equal to k and -k) and the outgoing 
momenta k ,  + q and k ,  - q are all taken to lie on the Fermi surface, the momentum 
transfer q is carried by the bosons D,,(q) = Djy)/detD-', D,, = D;'/detD-' and 
D,, = D,, = -D;'/det D-I. 

We have determined the cxi by computing r(q) numerically and considered its 
projection into different symmetry channels, for scattering on the Fermi surface. The 
results are shown in figures 3-6. For all dopings considered and over a wide range 
of values of the charge transfer gap the d channel g, =; sinkxsinky was found to 
be attractive, as previously conjectured by Kotliar et al [5 ] .  Whereas the effective 
interactions in the d channel gxz-yz = cos k, - cos ky, the p channels g, = sink, and 
g = sin ky and the extended s wave gx2+yz = cos k, + cos ky are repulsive for all values 

Y 
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Figure 3. a i ,  as defined in text, for various symmetry 
channels as a function of doping with A = 2 eV. The 
variation with doping is dominated by the doping 
dependence of the quasiparticle density of states, at 
the Fermi level, which has a logarithmic singularity 
at half filling. 
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Figure 4. ai as defined in text as a function of 
charge transfer gap for various symmetry channels, 
for Xh = 0.10. 
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Figure 6. ai for the extended s-wave channel 
function of charge transfer gap, for Xh = 0.10. 

as a 

of the charge transfer gap considered. When the interband terms proportional to 
RI2 (20) are neglected, only minor quantitative changes result, demonstrating that at 
least as far as superconducting instabilities are concerned an effective one-band model 
describes the physics. 

It should be noted that gx2+y2 = cos k,  + cos ky is a constant on the Fermi surface 
for the band structure considered here and therefore within this model there is no 
distinction between isotropic and anisotropic s-wave superconductivity and the gX2+y2 
channel must be repulsive. Inclusion of direct 0-0 hopping, which destroys the perfect 
nesting of the Fermi surface, will not change this result. Similar considerations dictate 
that the effective interaction within the one-band Hubbard model studied in [lo] must 
be repulsive in the extended s-wave channel. 

The variation of ai with xh is in fact dominated by the doping dependence of 
the density of states at the Fermi surface which has a logarithmic singularity at half 
filling. As a result (see figures 3 and 5) ,  the effective interaction in both repulsive and 
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attractive channels is suppressed with increasing doping. The system evolves smoothly 
from strong to weak coupling as the filling is increased. 
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